Polar Coordinates
Section 10.4a

As you know, the regular way that we write and graph equations is in ___________________________ form. Certain curves are easier to handle using Polar Graphing and Polar Equations. It is particularly nice to use Polar equations for things that ________________________ or for conic sections.

Polar Coordinates
Polar coordinates are written in the form (r, θ) where r is ___________________________ and θ is the angle measured from the positive x – axis, which is called the ___________________________. In Polar graphing, the ___________________________ is called the _____________.

Consider the graph below with the point \(2, \frac{π}{4}\). We can find many other ways to name this point in polar form.
Polar Coordinates
Section 10.4a
We need to be able to convert between Polar and Rectangular forms.
Copy the sketch below:

Coordinate Conversion
The following conversion formulas are for polar coordinates \((r, \theta)\) and rectangular coordinates \((x, y)\).

1. \(x = r \cos \theta\)
 \(y = r \sin \theta\)

2. \(\tan \theta = \frac{y}{x}\)
 \(r^2 = x^2 + y^2\)

Try these problems:
1. Convert the polar point \(\left(2, \frac{2\pi}{3}\right)\) to rectangular form.

2. Convert the rectangular point \(\left(2, -\sqrt{2}\right)\) to polar form.

Note: Always be careful about which quadrant you are in!
3. Convert the equation for a circle, \(x^2 + y^2 = 9\), to an equation in polar form:
4. Convert the equation $\theta = \frac{\pi}{6}$ into rectangular form.