Infinite Limits Notes
Section 1.5

Read page 83, skip the box on Definition of Infinite Limits and fill in the missing information below.

Let f be the function given by $f(x) = \frac{3}{x-2}$. From Figure 1.39 and the table, you can see that $f(x)$ __
__
__
This behavior is denoted as $\lim_{x \to 2^-} \frac{3}{x-2} = \text{______}$ and $\lim_{x \to 2^+} \frac{3}{x-2} = \text{______}$.

Complete the table below.

<table>
<thead>
<tr>
<th>x</th>
<th>1.5</th>
<th>1.9</th>
<th>1.99</th>
<th>1.999</th>
<th>2</th>
<th>2.001</th>
<th>2.01</th>
<th>2.1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$f(x)$ decreases _______________ $f(x)$ increases _______________

Copy Figure 1.39 below.

$f(x)$ _______________________________ as x approaches 2.

A limit in which $f(x)$ increases or decreases without bound as x approaches c is called ____________________________
Look at the bottom of page 83 and complete these sentences.

Be sure you see that the equal sign in the statement
\[\lim_{x \to _} f(x) = \infty \]
On the contrary, it tells you how the limit ____________________

Read and study example 1 on page 84 and then try the problems below.

Graph each function. For each function, analytically find the single real number c that is not in the domain. Then graphically find the limit of \(f(x) \) as \(x \) approaches \(c \) from the left AND from the right. Sketch and title the graph of each function.

a. \(f(x) = \frac{3}{x-4} \quad x \neq _ \)

\[\lim_{x \to -} \frac{3}{x-4} = _ \]

\[\lim_{x \to +} \frac{3}{x-4} = _ \]

b. \(f(x) = \frac{3}{2-x} \quad x \neq _ \)

\[\lim_{x \to -} \frac{3}{2-x} = _ \]

\[\lim_{x \to +} \frac{3}{2-x} = _ \]
c. \(f(x) = \frac{2}{(x-3)^2} \) \(x \neq ____ \)

\[
\lim_{x \to -} \frac{2}{(x-3)^2} = ____.
\]

\[
\lim_{x \to +} \frac{2}{(x-3)^2} = ____.
\]

d. \(f(x) = \frac{-3}{(x+2)^2} \) \(x \neq ____ \)

\[
\lim_{x \to -} \frac{-3}{(x+2)^2} = ____.
\]

\[
\lim_{x \to +} \frac{-3}{(x+2)^2} = ____.
\]

Skim pages 85-86 (it should be review) and copy the information in the box on page 87 on the next page. Skip the proof but read and study example 5 and fill in the missing information.
THEOREM 1.15 Properties of Infinite Limits

Let c and L be real numbers and let f and g be functions such that
\[\lim_{x \to c} f(x) = \infty \quad \text{and} \quad \lim_{x \to c} g(x) = L. \]

1. Sum or difference:
 \[\infty + L = \infty \]

2. Product:
 \[\infty \cdot L = \infty \]

3. Quotient:
 \[\frac{\infty}{L} = \infty \]

Similar properties hold for one-sided limits and for functions for which the limit of \(f(x) \) as \(x \) approaches \(c \) is \(-\infty\).

EXAMPLE 5 Determining Limits

a. Because the \(\lim_{x \to 0} 1 = 1 \) and \(\lim_{x \to 0} \frac{1}{x^2} = \infty \), you can write

\[
\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right) = \infty + 1
\]

\[= \infty + 1 \]

\[= \infty, \quad \text{Property 1, Theorem 1.15} \]
b. Because the \(\lim_{x \to 1^-}(x^2 + 1) = \) ___ and \(\lim_{x \to 1^-} (\cot \pi x) = \) ___, you can write
\[
\lim_{x \to 1^-} \frac{x^2 + 1}{\cot \pi x} = \underline{\text{______________}}
\]
\[
= \underline{\text{______________}}
\]
\[
= \underline{\text{____}} \quad \text{Property 3, Theorem 1.15}
\]

c. Because the \(\lim_{x \to 0^+} 3 = \) ____ and \(\lim_{x \to 0^+} \cot x = \) ___, you can write
\[
\lim_{x \to 0^+} 3 \cot x = \underline{\text{______________}}
\]
\[
= \underline{\text{______________}}
\]
\[
= \underline{\text{____}} \quad \text{Property 2, Theorem 1.15}
\]

d. Because the \(\lim_{x \to 0^-} x^2 = \) ____ and \(\lim_{x \to 0^-} \frac{1}{x} = \) ___, you can write
\[
\lim_{x \to 0^-} \left(x^2 + \frac{1}{x} \right) = \underline{\text{______________}}
\]
\[
= \underline{\text{______________}}
\]
\[
= \underline{\text{____}} \quad \text{Property 1, Theorem 1.15}
\]