A graphing calculator is required for some questions on this practice exam.

1. Consider the region bounded by \(f(x) = -2x^2 + 8 \) and \(y = 0 \).

 a) Graph \(f \) in the space below and shade the region mentioned above. (1 pt.)

 b) Find the volume of the solid created by revolving the region in part (a) above around the x-axis. (4 pts.)

 c) Find the volume of the solid created by revolving the region in part (a) above around the line \(y = 8 \). (6 pts.)
2. Let \(f \) and \(g \) be the functions given by \(f(x) = 2x(1-x) \) and \(g(x) = 3(x-1)\sqrt{x} \) for \(0 \leq x \leq 1 \).

 a) Find the area of the shaded region enclosed by the graphs of \(f \) and \(g \). (4 pts.)

 b) Find the volume of the solid with the shaded region enclosed by the graphs of \(f \) and \(g \) as its base and square cross-sections perpendicular to the \(x \)-axis. (4 pts.)

 c) Find the volume formed by known cross-sections that are perpendicular to the \(x \)-axis on the figure above. Each cross-section should be a rectangle whose height is twice its width. (4 pts.)
3. Find the length of the arc given by \(f(x) = x^2 - \frac{1}{8} \ln x \) for \(1 \leq x \leq e \). (5 pts.)

4. Find the surface area of the solid formed by revolving the graph of \(y = x^{\frac{3}{2}} \) about the y-axis. Use the part of the curve from (1,1) to (4, 8). Include a sketch of the solid. (6 pts.)